
An Architecture for Agile Machine Learning
in Real-Time Applications

Johann Schleier-Smith
if(we) Inc.

848 Battery St.
San Francisco, CA 94111

johann@ifwe.co

ABSTRACT
Machine learning techniques have proved effective in recom-
mender systems and other applications, yet teams working
to deploy them lack many of the advantages that those in
more established software disciplines today take for granted.
The well-known Agile methodology advances projects in a
chain of rapid development cycles, with subsequent steps of-
ten informed by production experiments. Support for such
workflow in machine learning applications remains primitive.

The platform developed at if(we) embodies a specific ma-
chine learning approach and a rigorous data architecture
constraint, so allowing teams to work in rapid iterative cy-
cles. We require models to consume data from a time-
ordered event history, and we focus on facilitating creative
feature engineering. We make it practical for data scien-
tists to use the same model code in development and in
production deployment, and make it practical for them to
collaborate on complex models.

We deliver real-time recommendations at scale, return-
ing top results from among 10,000,000 candidates with sub-
second response times and incorporating new updates in just
a few seconds. Using the approach and architecture de-
scribed here, our team can routinely go from ideas for new
models to production-validated results within two weeks.

Categories and Subject Descriptors
H.4.m [Information Systems Applications]: Miscella-
neous

Keywords
Agile; Recommender Systems; Machine Learning

1. INTRODUCTION
Innovative companies often use short product cycles to

gain advantage in fast-moving competitive environments.
Among social networks, Facebook is known for especially

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the Owner/Author(s). Copyright is held by the
owner/author(s).
KDD’15, August 10-13, 2015, Sydney, NSW, Australia.
ACM 978-1-4503-3664-2/15/08.
DOI: http://dx.doi.org/10.1145/2783258.2788628.

frequent release cycles [11], and if(we) counts such capabili-
ties as crucial to the early success of the Tagged and hi5 web
sites, which today form a social network with more than 300
million registered members. We especially value the quick
feedback loop between product ideas and production exper-
iments, with schedules measured in days or weeks rather
than months, quarters, or years.

Today, on account of the approach described here, if(we)
can develop and deploy new machine learning systems, even
real-time recommendations, just as rapidly as we do web or
mobile applications. This represents a sharp improvement
over our experience with traditional machine learning ap-
proaches, and we have been quick to take advantage of these
capabilities in releasing a stream of product improvements.

Our system puts emphasis on creative feature engineer-
ing, relying on data scientists to design transformations that
create high-value signals from raw facts. We work with com-
mon and well understood machine learning techniques such
as logistic regression and decision trees, interface with pop-
ular tools such as R, Matlab, and Python, but invest heav-
ily in the framework for data transformation, production
state management, model description, model training, back-
testing and validation, production monitoring, and produc-
tion experimentation,

In what we believe to be a key innovation not previously
described, our models only consume data inputs from a
time-ordered event history. By replaying this history we
can always compute point-in-time feature state for train-
ing and back-testing purposes, even with new models. We
also have a well-defined path to deploying new models to
production: we start out by playing back history, rolling
forward in time to the present, then transition seamlessly to
real-time streaming. By construction, our model code works
just the same with inputs that are months old as with those
that are milliseconds old, making it practical to use a sin-
gle model description in both development and production
deployment.

In adopting the architecture and approach described here,
we bring to machine learning the sort of rapid iterative cy-
cles that are well established in Agile software development
practice [28], and along with this the benefits.

Our approach can be summarized as follows:

• Event history is primary: Our models consume
data inputs as time-ordered event history, updating
model signals represented by online features, state vari-
ables for which we have efficient incremental update
routines with practical storage requirements.

2059

• Emphasis on creative feature engineering: We
rely heavily on the insights of data scientists and on
their ability to devise data transformations that yield
high-value features (or signals) for machine learning
algorithms.

• One model representation: The same code used by
data scientists during model development is deployed
to production. Our models are written in Scala, which
makes reasonably efficient implementations practical,
which offers advanced composability and rich abstrac-
tions, and which allows our software engineers to cre-
ate library code providing a DSL-like environment, one
where data scientists can express feature transforma-
tions in a natural way.

• Works with standard machine learning tools:
There exists a tremendous variety of sophisticated tools
for training machine learning models. Our approach
interfaces cleanly with R, Matlab, Vowpal Wabbit, and
other popular software packages.

Key benefits include:

• Quick iterations: We routinely need just a few days
to go from an idea, a suggestion for a feature that
might have increased predictive power, to production
implementation and experimental verification. This
rapid cycle keeps the cost of trying new ideas low, fa-
cilitates iterative progress, and helps data scientists
stay engaged and focused.

• Natural real-time processing: Although the event
history approach can be used in off-line or batch sce-
narios, using real-time signals carries no additional
cost. Even in applications with relaxed update re-
quirements, eliminating batch processing can make a
problem easier to reason about. Also, real-time stream
processing usually allows for more uniform production
workload, which can be easier to manage.

• Improved collaboration: In many corporate envi-
ronments data scientists are inclined to work in si-
los, and they commonly find it difficult to reproduce
one another’s work [16]. Our environment offers data
scientists the best enablers of modern software de-
velopment, including version control, continuous inte-
gration, automated testing, frequent deployment, and
production monitoring. With these tools, plus shared
access to a production event history, it becomes much
more natural for data scientists to collaborate as they
solve problems.

The primary driver of our work has been building the rec-
ommendation engine for a dating product, Meet Me, that is
offered within Tagged and hi5. Choosing from roughly 10
million active members, and incorporating signals from re-
cent seconds, the system produces an ordered list of profiles
to be presented to the user for consideration. We devote Sec-
tion 2 to a detailed description of this application and the
design choices that it spurred. The open source Antelope
framework, described in Section 3, generalizes the concepts
developed for Meet Me, adds usability improvements, and
provides a reference implementation independent from the
if(we) codebase and applications.

2. THE MEET ME DATING APPLICATION

2.1 Problem
Among various features offered by the Tagged and hi5 so-

cial platform, Meet Me caters most directly to those seeking
romantic connections; it serves as the center of the dating
offering. The user is presented with one profile at a time,
and prompted with a simple question, “are you interested?”
In response, the user may select from two options, variously
labeled as yes or no, �or �. In our terminology, we describe
such a response as a vote, and in this discussion we stan-
dardize on the response terminology positive and negative.
Two users achieve a match when both express mutual in-
terest through positive votes for one another, and creating
such matches is an important optimization goal for our al-
gorithm. An illustrative screen shot of the Meet Me user
interface appears in Figure 1.

Figure 1: The Meet Me voting interface, shown here in the
Tagged Android application. Users can touch the voting
buttons at the bottom of the screen, or may swipe the pre-
sented profile towards the right to register a positive vote,
or towards the left to register a negative vote.

The Meet Me style of matching, adopted by Tagged in
2008 and in 2012 by hi5, following a merger, appears to have
been introduced by Hot or Not Inc. in the early 2000s. In re-
cent years it attracted even greater attention as embodied in
the Tinder mobile dating app. Notable implementations also
include those by online social discovery companies Badoo, a
UK company headquartered in London, and MeetMe Inc., a
US company headquartered in New Hope, Pennsylvania.

We can view our Meet Me optimization problem from one
of several perspectives, but prefer a formulation from the
viewpoint of the user, posing the problem as follows: “given
the millions of active user profiles matching basic eligibility

2060

criteria (principally filter settings), which should we next se-
lect to show?” We believe that focusing on the user helps
data scientists build empathy for the individual experience,
which is an important guide to intuition. It is our conjecture
and our hope that separately optimizing for individual users
produces a result that is well optimized for all users. Still, in
developing a model for the experience of one user, we must
account for behavior of other users as well. Most obviously,
we recognize that it is not sufficient to derive recommenda-
tion from predictions of profiles that a user is likely to be
interested in, it is also important that interest is reciprocated
and mutual.

We decompose the problem by expressing the match prob-
ability in terms of separate conditional probabilities:

p(matcha↔b|votea→b) = p(vote+a→b ∧ vote+b→a|votea→b)

= p(vote+a→b|votea→b)× p(voteb→a|vote+a→b)

×p(vote+b→a|voteb→a ∧ vote+a→b)

(1)

where matcha↔b represents a match between user a and user
b, votea→b represents a vote, either positive or negative, by
user a on user b, and vote+a→b represents a positive vote by
user a on user b.

In decomposing the match probability into three parts, the
first and third represent the likelihood that the voting user
issues a positive vote. We represent in p(vote+a→b|votea→b)
the likelihood that the user a will vote positive when we
recommend user b. p(voteb→a|vote+a→b) is the likelihood that
user b will vote on user a following vote+a→b, a probability
that is itself influenced not only by the behavior of user b, say
how active she is and how reliably she returns to Meet Me,
but also by the implementation and rules of our algorithm,
for example by how we rank user a among other users who
have registered positive votes on user b, and by how often our
recommendations of user b to others result in positive votes.
The third component, p(vote+b→a|voteb→a ∧ vote+a→b) can be
modeled similarly to the first component, for it represents
the likelihood that a vote comes out as positive, yet since
our application sometimes highlights match opportunities
we do better by distinguishing this situation and training a
separate model for it.

Ranking users b according to p(matcha↔b|votea→b) is a
reasonable first approach to the problems of making Meet
Me recommendations for a. We will describe improved ap-
proaches later but first discuss early attempts at algorithm
development.

2.2 Early Attempts
Our first algorithm implementations Meet Me were foun-

dationally heuristic, only later coming to incorporate ma-
chine learning. We describe a progression of algorithms be-
fore outlining the challenges we encountered. These chal-
lenges arose not only from our approach to machine learning,
but also from our system architecture, a traditional service-
oriented web application, the layout and data flows of which
are shown in Figure 2.

2.2.1 Heuristic Algorithms
An important early recommendation algorithm employed

a patented approach [30] deriving inspiration from Page-
Rank [29]. Ours may be the first commercial application
of PageRank to social data, though Twitter also described

Figure 2: Architecture diagram of an early implementation
of the Meet Me recommendation system. The API and
database are based on standard web services technologies
(PHP and Oracle). Recommendation candidates come from
an Apache Solr search instance that first builds an index
by querying the database, then stays current by process-
ing change logs from the application. The ranking service
(Java) operates similarly in maintaining an in-memory so-
cial graph, but also issues on-demand database queries to
update user profile data. Data scientists engaged in devel-
opment activities such as exploratory analysis, training, and
backtesting query the database to extract working sets, most
often studied using R and Python.

a similar approach and popularized the notion of personal-
ized PageRank in a social context [12]. Whereas the original
PageRank algorithm for web search can be modeled as the
likelihood of a page visit by a “random surfer” who starts
at a randomly selected page, then traverses the graph along
links between pages, at each hop continuing with probabil-
ity α and stopping with probability 1− α, the personalized
PageRank algorithm starts the graph traversal at the node
of interest, in this case at the user who is to receive recom-
mendations.

Our early work demonstrated the value of latent infor-
mation present in social network interactions. For example,
even without explicit data on age, gender, or sexual orien-
tation, inspection of top results from a personalized Page-
Rank query on the graph of friend connections or message
exchanges gives results that are immediately recognizable as
relevant (viewing a grid of photos can be a surprisingly effec-
tive way to get a quick and powerful impression of what an
algorithm is doing, often proving more useful than statistical
measures).

While our approach remained entirely heuristic, involving
neither machine learning nor statistics, it provided plenty of
parameters for experimentation. We focused on tuning pa-
rameters of the personalized PageRank algorithm, as well as
parameters involving the level of user activity and the level
of inbound positive interest. Lacking a predictive model of
user behavior, we proceeded by intuitively guided trial and
error, using judgment and quick sequences of A/B tests to
maximize the number of users who received matches each
day.

2061

2.2.2 Machine Learning
We continue to believe that heuristics are a good way

to start building recommendation engines, they test our
problem understanding and can lead to good user experi-
ences even with simple implementations. However, limited
back-testing ability drives excess need for production ex-
periments, and as the number of parameters rises it be-
comes increasingly awkward to reason about how to tune
them manually. When we saw gains from heuristic improve-
ments plateau we began to incorporate machine learning
techniques, pursuing a promise of scaling to greater model
complexity.

We chose to implement an SVM-based classifier predicting
p(vote+a→b|votea→b) from a broad range of user details, not
only age, gender and location, but also behavioral measures
reflecting activity in sending and receiving friend requests
and messages. We also included Meet Me activity, profile
characteristics such as photos, schools, profile completeness,
time since registration, profile viewing behavior, number of
profile views received, ethnicity, religion, languages, sexual
orientation, relationship status, and expressed reason for
meeting people. Our approach might roughly be summed
up as using any readily available information as a model fea-
ture, a contrast to the deliberate design approach we would
later take.

This combination of machine learning with heuristics led
to some gains at first, but we again soon found progress
faltering. It was particularly troubling that the time be-
tween each improvement increased while gains realized in
each decreased. In attempting to introduce new features to
reflect user behavior better we encountered substantial soft-
ware engineering challenges, including months spent making
changes across multiple services, not only the ranking com-
ponent but also the web application and database.

Among challenges we identified were the following:

• Long deployment cycles: Any algorithm changes
required writing a large amount of software: SQL to
extract historical data, Java code in models, Java code
for processing real-time updates, often PHP code and
more SQL to change how data was collected. For live
experiments we also needed to consider how new and
old implementations would coexist in production.

• Limited feature transformations: For the most
part our classifier relied on features already available
in the application, or those readily queried from the
production database. These features represented data
useful for display or for business logic, not necessarily
for predictions. We lacked a simple and well-defined
path for introducing new features, one with less over-
head, one requiring effort commensurate to the com-
plexity of the new feature rather than to the complex-
ity of the architecture.

• Difficulty in generating training data: The data-
base powering the application might store the current
value of a feature, but might not retain a complete
change log or history. If we were lucky we had access
to a previous snapshot, but such point-in-time images
would not accurately reflect the data available for real-
time recommendations (see Figure 3). If unlucky, we
would need to make new snapshots and wait for train-
ing data to accumulate.

Figure 3: Training data consists of feature snapshots from
the application database and outcomes occurring between
them. These models are unable to capture feature varia-
tion between snapshots, and using real-time data in produc-
tion introduces an inconsistency between model training and
model deployment.

• Lack of separation between domains: We relied
on computing features mostly in application code, cre-
ating a tight coupling between our recommendation
system and our general business logic. We also mixed
in-application feature computations with in-database
computations expressed as SQL, furthering complex
couplings.

• Limited ability to backtest: While we used train-
ing and cross-validation techniques in development of
an SVM classifier, our recommendations remained de-
pendent on a number of heuristic rules with tunable
parameters. Our only path to tuning such parameters
was through production experiments.

• Limited problem insight: Ad hoc data exploration
and focus on statistical measures of performance left
data scientists without a strong sense of user experi-
ence and, therefore, without the intuition necessary for
breakthrough improvements.

• Limited ability to collaborate: We lacked a clear
path to combine the efforts of multiple data scientists.
We had only limited ability to deploy concurrent ex-
periments, and the cost and complexity of implement-
ing new features strained engineering bandwidth.

With so many challenges, we were lucky to have pro-
duction experiments providing a safety net, protecting us
against regressions as we stumbled towards improved rec-
ommendation algorithms.

The early approach described here has many shortcom-
ings that leave it far from state-of-the-art. That said, in
comparing notes with others we have come to believe that
many of the challenges we encountered are common in in-
dustry. Our hope is that the solutions we share below will
be broadly useful to those who deploy machine learning for
high impact, as well as to those who plan to do so.

2.3 The Event History Architecture and Agile
Data Science

Our answer to the struggles of previous approaches in-
volves a number of deliberate choices: a departure from our
previous software architecture and data architecture, spe-
cific ways of constructing machine learning models, and an

2062

adherence to certain ways of working with data—and with
our team. These choices reinforce one another and allow an
agile and iterative approach to delivering real-time recom-
mendations for Meet Me.

2.3.1 Data and Software Architecture
Our architecture is driven by requirements, which can be

summarized as follows:

• Allow rapid experiments: We should be able to go
from ideas to validated results within two weeks.

• Update in real-time: Since user sessions are short,
∼90s on average, it’s important that models update
within a few seconds, preferably <1s.

• Support consumer internet scale and respon-
siveness: Millions of active users, thousands of up-
dates per second, subsecond response times for recom-
mendations.

• Encourage collaborative development practices:
Teams of data scientists and software engineers should
make collective progress towards better Meet Me rec-
ommendations.

The architecture of our solution drops dependence on the
relational database powering the web application, instead
relying entirely on an event history log to support our ma-
chine learning systems. Importantly, we provide high-speed
in-order access to event logs, and allow consumers to ac-
cess both historical events and real-time streaming events
using a single interface (see Listing 1). This architecture,
diagrammed in Figure 5, puts the event history repository
at the heart of the recommendation application.

It now becomes very natural to generate training and
backtesting data for supervised learning algorithms. When-
ever we encounter an event that we might want to predict,
say p(vote+a→b|votea→b), we first write training data compris-
ing the state of the model features just prior to the event
occurrence, together with the event outcome. Only then do
we update the state to reflect the event occurrence and con-
tinue rolling forward in time. Figure 4 illustrates generating
training events in this way. The training data can be for-
matted for use with common statistical software, in our case
R and Matlab.

Surprisingly, certain sorts of information that may not
appear as event-like can benefit from representation in an
event format. Take for instance zip code boundaries, ip-to-
geography mappings, ISO country codes, or most any refer-
ence information that might naturally be implemented using
a static lookup table. In many of these cases information can
evolve, if slowly. By structuring such information as fact up-
date events we maintain valuable flexibility and uniformity
in our abstractions.

Another important benefit of the event history architec-
ture is the symmetry it creates between historical backtest-
ing and real-time streaming. We use the same feature def-
initions and state management software in development as
we do in production. This proves key to quick deployments
and rapid iterative data science cycles.

The event history architecture makes it practical to gener-
ate detailed training data for newly devised features, makes
it straightforward and practical to deploy models based on

Figure 4: Training data generated from event history has
granular alignment of feature state and training outcomes.

Figure 5: Diagram of the event history architecture. The
event history repository serves as a central source of truth for
production and development, and supports both historical
access and real-time streaming.

such new features in production experiments, and consoli-
dates features in one piece of code that works in both de-
velopment and production. It provides composable abstrac-
tions that allow complex feature definitions, and it provides
a single source of truth.

2.3.2 Data Science
A central promise of Agile methodology is a more re-

sponsive development cycle, one that generates quick feed-
back through design, implementation, and validation phases,
one that allows continuously incorporating learnings, mak-
ing corrections, and exploiting opportunities. Another cen-
tral promise is improving collaboration among team mem-
bers. All of these are characteristics appealing for data sci-
ence and for development of machine learning systems, and
our approach delivers them in this context.

Figure 6 illustrates our cycle of iterative progress. It starts
with data scientists developing problem understanding, and
importantly, intuition. From here we propose model im-

2063

Figure 6: Agile data science cycle.

provements, typically in the form of new features. After
training and establishing statistical basis for improvements
through backtesting we deploy models to production and
study impacts. We often realize gains but always improve
our understanding, and enter the next development cycle
with even stronger ideas. Additional details follow:

Problem intuition and understanding: Exploratory
analysis often proceeds by asking simple questions, generally
addressed with descriptive statistics and perhaps simple ag-
gregates. We also encourage visualization, especially of user
experience, and often find we can learn more from viewing
just 100 faces, sampled from among 100,000, than we can
from statistics on the aggregate. Working in this way not
only helps us build our intuition but also our user empathy.

Models and feature engineering: We emphasize cre-
ative features with otherwise straightforward models. The
event history architecture provides us with flexible feature
design capabilities, and logistic regression serves us well, in-
tegrating signals typically represented by 50–100 features.
Rather than learning a model with per-user parameters,
we instead construct features that represent individual user
characteristics, including how they relate to other users.
These features evolve in response to individual user behav-
ior, while the learned parameters of the model, applying to
all users, remain fixed.

Training predictive models: Our event history accu-
mulates several thousand events per second, and to compute
features we need to process the entire stream. Early sam-
pling is not an option because of the interconnected nature of
our social network, and because features often capture inter-
actions between users. On the other hand, since our models
contain fewer than 100 parameters we are capable of gener-
ating much more training data than we need, at least over
much of the domain of the feature space. This suggests that
sampling is possible for training, however we are presented
with another challenge: we must be careful not to introduce
feedback, as occurs when the examples in the training set
are biased because they are introduced by a recommenda-
tion algorithm. We address this problem by substituting a
training recommendation, selected at random, in place of a
ranked recommendation in 1% of instances. Doing so proved
key to our ability to consistently achieve nonnegative per-
formance changes when retraining models with more recent
data, a foundational capability necessary for progress. We
can imagine using more sophisticated sampling techniques
to generate training examples, but benefiting from an enor-
mous wealth of data we have not yet done so.

Production experiments: Our approach to large scale
experiments is similar to that used by other consumer inter-

net companies [18]. We encounter some special needs when
testing Meet Me algorithms because performance ultimately
depends on interactions between users. To address these, we
developed a split world approach in which users are assigned
at random to one of two partitions, seeing only users with the
same “world” assignment in recommendations. Split world
experiments are expensive because a reduced candidate pool
degrades user experience, and because this drives us to limit
ourselves to running one such experiment at a time. While
we rely on split world experiments for final model accep-
tance, we start out evaluating model performance without
a split world, assigning an initially small but progressively
larger set of randomly selected users to the test group. Dur-
ing experiments we also take care to observe not only the
initial effect, but also whether it grows or diminishes as user
behavior adapts over time.

Production operations: A number of operating proce-
dures support our Agile data science approach. We continu-
ously monitor model performance, with loss and bias serving
as indicators of problems. These measures can be essential
for catching bugs that would otherwise go undiscovered amid
the complexity of personalized recommendations.

2.4 Productivity and Business Results
Following our implementation of the event history archi-

tecture, our replacement of the original heuristic recommen-
dation engine with a fully trained machine learning model
implementation, and our adoption of a rapid-cycle Agile
data science practice, we readily realized gains against our
core optimization objectives. While the progress shown in
Figure 7(a) represents contributions from various tuning ef-
forts, including visual layout changes and promotions, re-
sults of experiments credit improved machine learning algo-
rithms for over 30% increase in Meet Me usage.

During the course of 12 months our team released 21
changes to the model and adjusted experiment parameters
163 times. During an especially intense 6-month period
(May through October 2013) we released 15 changes to our
models and adjusted experiments 123 times. We credit our
progress to this rapid iteration. Unfortunately, towards the
end of this period we suffered from increases in spam abuse
(Figure 7(c)), forcing a diversion of attention from improv-
ing recommendations to addressing this ever-present threat.
We have deployed a number of the techniques developed here
in our latest anti-spam measures, but the topic is beyond the
scope of this paper.

2.5 The Meet Me Implementation
Here we attempt to provide a flavor for the models we

have tested, though the full details of our Meet Me recom-
mendation algorithm remain proprietary.

Optimization objectives: Perhaps the most straight-
forward approach is to optimize for the total number of
matches, yet it quickly becomes clear that additional ob-
jectives call for consideration:

• Total number of matches: Simple to model by opti-
mizing Equation 1, but gives too much exposure to
active users with a high positive vote rate and fails to
produce a good experience for many of the users.

• Total number of individuals experiencing a match each
day: As Equation 1 but only the user’s first match of
the day counts towards the objective. This requires
additional estimation but improves effectiveness.

2064

0

500,000

1,000,000

1,500,000

2,000,000

Apr 2013 Jul 2013 Oct 2013 Jan 2014 Apr 2014

Da
ily

 U
niq

ue
 U

se
rs

Matchers
Voters

(a) Meet Me daily unique matchers and voters.

0

1,000,000

2,000,000

3,000,000

4,000,000

Apr 2013 Jul 2013 Oct 2013 Jan 2014 Apr 2014

Da
ily

 M
at

ch
es

(b) Meet Me daily matches.

0.1

0.2

0.3

Apr 2013 Jul 2013 Oct 2013 Jan 2014 Apr 2014

Sp
am

 In
dic

at
or

(c) Meet Me spam index.

Figure 7: Meet Me metrics through a period of focused tun-
ing. (a) shows progress towards increasing activity, with the
7-day average of daily voters and matchers overlaid on pro-
duction changes. Vertical red lines indicate new algorithm
releases, and blue lines indicate adjustments to experiment
weights. (b) shows the 7-day average of daily matches, which
doesn’t correlate with other measures of user activity. Initial
models designed to optimize matches led to limited increases
in matchers and voters, whereas our later algorithms in-
creased these metrics despite producing fewer total matches.
(c) shows an index of spam, here provided by proxy of the
female positive vote rate. Spam can contribute to inflated
Meet Me metrics, especially matches, but this data indicates
stable spam levels through the period of greatest gains. Near
the end of the period our efforts shifted to combating in-
creasing spam and away from improving recommendations.

• Number of conversations following from a match: We
can consider the match successful only after message
exchanges, or some other indication of a connection be-
tween people of a certain depth. Again, more modeling
is required but we can hope for improved effectiveness.

• Number of users engaged with the Meet Me feature on
a daily basis: Here we model how a recommendation
impacts the probability that users involved will come
back to the product on a future day. Reasons for re-
engaging could include responding to a match oppor-
tunity, conversing following a match, or reacting to the
present experience, perhaps with encouragement, per-
haps with renewed determination to achieve a match.

While we have experimented with all of the approaches listed
above, we achieve best results with the last alternative, by

optimizing for the number of users predicted to engage with
Meet Me on future days.

Models: We separately model the likelihood of a posi-
tive vote, either p(vote+a→b|votea→b) or p(vote

+
b→a|voteb→a∧

vote+a→b), and the likelihood of a user returning to vote
p(voteb→a|vote+a→b). For the positive vote likelihood we use
logistic regression, for one because supporting tools are well-
developed, but also because it provides a probability as out-
put. This allows us to verify model calibration, and provides
a well-defined interface between separate model components.
We have also incorporated a decision stump model, but con-
tinue to use logistic regression to calibrate it to outcome
probabilities.

We estimate time to return using the exponential-response
variant of a generalized linear model, with a threshold time
to obtain a return vote probability. We note that this ap-
proach is a simplified variant of the hazard based approach
to user return time prediction developed by Pandora [17].

Features: We use online features only, requiring quick
updates for new events and efficient in-memory implemen-
tations. Features must also be very quick to access during
production ranking, allowing for only a few memory accesses
and perhaps some simple arithmetic, e.g., computing a ratio.
A good feature is stationary, meaning that with consistent
user behavior it asymptotically approaches a fixed value.
For example, the number of votes in the past week repre-
sents a stationary feature, as does the fraction of all votes
that are positive, whereas the total number of votes or the
total number of positive votes do not represent stationary
features. Some of the features we have implemented include
the following, listed along with examples:

• Binary profile indicator: Is this user in the US?
• Factor indicators: Group all countries into 20 buckets,

then provide a binary indicator of user location for
each.

• Combination features: Product of factor indicators of
two users, say (country bucket of user a) × (country
bucket of user b).

• Arithmetic features: Age difference, square of age dif-
ference, difference of square of age, or any other func-
tion of the ages of two users.

• Regular expression features: Does the user send mes-
sages matching a certain spam indicator?

• Ratio features: Fraction of past votes by the user that
are positive.

• Filtered features: Fraction of past votes by the user
that are positive, calculated for each of various recom-
mended user country buckets.

• Threshold features: Binary indicator of whether some
measure, perhaps a ratio, exceeds a threshold value.

• Most recent value features: When was the user most
recently active?

• Transformations relative to current time: How long
ago was the user most recently active?

• Exponentially smoothed features: What is the expo-
nentially smoothed voting rate

∑

i

e−k(t−ti) for votes

at times ti, current time t and smoothing constant k?

Our approach stresses the composability of models and
features. We routinely rank results according to the com-
bination of several models, and we have experimented with
unsupervised models that feed into features of higher-level
supervised models. Further details of the features described

2065

above are available as part of the Antelope open source soft-
ware described in Section 3.

2.6 Software Engineering Notes
While if(we) eschews the software development culture of

“not invented here”, instead making extensive use of both
commercial and free software packages, the Meet Me recom-
mendation system consists almost entirely of custom code.
Our abstractions and trade-off choices are somewhat differ-
ent from those used in batch systems such as Hadoop, from
those used in relational databases, and from those used by
other stream processing software such as Spark Streaming,
different enough that we choose to develop our own imple-
mentations using Scala and Java.

The event history repository is a service implementing an
interface similar to that outlined in Listing 1. This interface
highlights the essential character of the event history. It
can only do two things: 1. receive and store new events, 2.
return events in time-order, possibly applying some filter.
By specifying an endTime in the future (typically +∞) the
client application gains access to real-time streaming, and
in a single call to getEvents can access both historical and
future events.

trait EventHistory {
def publishEvent(e: Event)
def getEvents(startTime: Date, endTime: Date,
eventFilter: EventFilter, eventHandler: EventHandler)

}

Listing 1: The EventHistory interface (simplified).

We maintain feature state using large arrays of primitives,
a packed in-memory representation allowing us to support
over 10,000,000 candidate user recommendations on a com-
modity server. Our framework takes care of mapping feature
state to array indexes. Our present implementation supports
only a dense feature layout but we can imagine implementing
a layout supporting sparse feature vectors. We spent some
time considering whether to lay out our features row-major
or column-major format, opting for the row-major format
so as to keep our implementation simpler.

Our implementation is an efficient one that seeks to limit
object allocation and that aims to provide good optimiza-
tion opportunities to the JVM. While we can rank >50,000
candidate users per second, we see opportunities for order-
of-magnitude improvements through optimization.

High availability and scalability are provided by replica
ranking servers, while a single feature building server prop-
agates state changes. In the event of feature builder failure
we can restart processing from the event history log, accel-
erating recovery with saved snapshots. Even at our scale,
we choose to optimize for performance rather than intro-
duce distributed system complexities. A modern commodity
server can handle >10,000 updates per second across 100 or
more features, leaving us with ample headroom. We believe
that with such implementations even many large businesses
have no need for distributed architectures.

3. THE ANTELOPE REAL-TIME EVENTS
FRAMEWORK

The event history architecture, our approach to feature
engineering, and our approach to Agile data science are gen-

eral, however the implementation for Meet Me recommen-
dations remains coupled both to the problem and to the
if(we) platform. The Antelope open source project1 aims
to make our approach broadly available. It presently repre-
sents a demonstration rather than a production tool, yet it
fully illustrates the flexibility of the event history architec-
ture, provides concrete examples of feature engineering, and
serves as a guide for other implementations.

In our first example application, we address a Kaggle chal-
lenge for product search and recommendations [1]. Using the
Feature interface of Listing 2 in the context of learning to
rank [14], we demonstrate use of a simple Popularity feature
along with a more complex TfIdfFeature.

trait Feature {
def score(ctx: ScoringContext): Long => Double

}

class Popularity extends Feature {
val ct = counter(skuViewed)
override def score(implicit ctx: ScoringContext) = {
id => ct(id) div ct()

}
}

class TfIdfFeature extends Feature {
val terms = counter(skuUpdated,
productNameUpdatedTerms)

val docsWithTerm = set(productNameUpdatedTerms,
skuUpdated)

val docs = set(skuUpdated)
override def score(implicit ctx: ScoringContext) = {
val queryTerms = ctx.query.normalize.split(" ")
val n = docs.size()
id => (queryTerms map { t =>
val tf = terms(id, t)
val df = docsWithTerm.size(t)
sqrt(tf) * sq(1D + log(n / (1D + df)))

}).sum
}

}

Listing 2: The Feature interface and example implementa-
tions (simplified).

In our second example, we simulate user activity in an
online dating context, then build recommendations using a
model with features similar to those we have deployed for
Meet Me (described in Section 2.5).

4. RELATED WORK
We present our review of related work in four parts: Agile

data science, design and architecture of machine learning
systems, choice of machine learning algorithms, and other
approaches to real-time processing. While we find much
of this literature to be complementary to the event history
architecture described here, we find no direct precedent for
our design.

Agile data science: While the Agile methodology [5]
is well understood and broadly practiced in many variants
by software engineers, the approach is only starting to make
impact on data science. Jurney [15] provides a how-to guide
for performing analytical tasks using Hadoop, encouraging
adoption of Agile values. This work focuses on business un-
derstanding and does not address production recommenda-

1https://github.com/ifwe/antelope

2066

tion engines, as we do. Beyond this, the dearth of literature
on Agile data science is remarkable; we imagine this may
change in coming years.

Machine learning systems: The work described here
has strong philosophical parallels to the Hazy project [22],
which states the goal of “making it easier to build and main-
tain big-data analytics.” The emphasis on feature engineer-
ing, and the belief that simple machine learning models
with more or better features will often outperform more so-
phisticated algorithms, rings true to our experience. We
too emphasize programming abstractions and infrastructure
abstractions, but choose rather different implementations.
Whereas the Hazy project uses probabilistic logic program-
ming, we use reactive-style Scala code to implement features.
Our central infrastructure abstraction is the event history
repository, whereas Hazy works against a static data model.

The Hazy team has also described a vision of a data sys-
tem for feature engineering [4]. In asserting that “feature
man-months aren’t mythical,” they suggest that whereas on
traditional software projects adding more people rarely leads
to proportionately faster progress [7], in trained systems
loose coupling can permit a large team to work toward a
common goal with only limited coordination. The proposal,
most recently implemented in the DeepDive system [32], fa-
cilitates feature engineering as we do, yet does not adopt a
time-based data model or provide for real-time updates.

Recent work by the UC Berkeley AMP Lab reveals Velox
[10], a low-latency solution to model serving and manage-
ment. Velox provides important operational capabilities not
previously available in open-source machine learning tool-
kits. In addition to low-latency serving it provides an online
update functionality that approximates continuous model
retraining, as well as periodic batch retraining. We are not
alone in recognizing the gap between the promise of machine
learning applications and what is commonplace in industry.
In comparison, by using online features only, we achieve con-
tinuous production operation without needing batch opera-
tions. Furthermore, in addressing feature engineering chal-
lenges we contribute additional productivity improvements.

There are a variety of toolkits designed to make machine
learning more practical and accessible. MLbase [20] auto-
mates many of the technical steps required to build effective
machine learning models. The venerable Weka [13] remains
a powerful environment for machine learning, offering not
only a large number of machine learning algorithms but also
a variety of filters for preprocessing data. Our provisions for
feature engineering are richer, and we can imagine comple-
menting both of these toolkits.

Machine learning is applied extensively in online advertis-
ing, and the production techniques developed at Google are
relevant to our work [27, 31]. While there is no mention of
a central event history or of using event processing to sup-
port iterative development and expressive feature engineer-
ing, the importance of real-time processing, of a log-based
approach, of keeping machine learning simple, and of think-
ing carefully about architecture all come through clearly.

Machine learning algorithms: We rank recommenda-
tions in Meet Me by ordering candidates according to the
optimization objective, matches in early implementations,
and predictions for overall engagement in later implementa-
tions. Here we review alternatives.

The learning to rank literature is perhaps best developed
in the area of information retrieval [25], but its principles

can apply to personalized people recommendations as well
[14]. Our experience developing examples for Antelope sug-
gests that learning to rank is a natural match with the event
history architecture.

People recommendations struggle with the special chal-
lenge of a high-dimensionality target space; there are many
more candidates than in e-commerce or in entertainment.
Collaborative filtering has widely publicized success as part
of Amazon’s product recommendations [24], and related ma-
trix factorization techniques were used in winning the Net-
flix prize [19]. While we did not pursue such approaches, it
would be interesting to evaluate whether they are practical
in our setting.

Contextual-bandit techniques have also been adopted for
personalized recommendations [23], in an approach that we
believe could be combined with the creative feature engi-
neering described here. In particular, we are encouraged by
results showing offline evaluation using previously recorded
traffic, which dovetails with an event history approach.

Real-time processing: A number of architectural par-
adigms exist for processing real-time information.

Complex event processing is well established as an integra-
tion pattern that fits naturally with an Agile approach [9].
The MillWheel system described by Google [3] is a platform
for reliable stream processing that can execute arbitrary im-
perative code. A log-centric architecture extolled by Kreps
[21] is particularly well aligned with our perspectives on data
processing; the immutable log represents the system’s sin-
gle source of truth, just like our event history. Similarly,
Event Sourcing and CQRS (Command & Query Responsibil-
ity Segregation) [6] patterns for application architecture are
particularly well suited to our approach. Streaming query
engines are developed in the academic literature [8] and have
commercial implementations [2]. All of these platforms and
perspectives could serve as a part of an implementation for
our architecture.

One approach to real-time recommendations is to build a
speed layer on top of a batch system [26]. While this evolu-
tionary approach is sensible, and while some calculations are
easier with batch processing, we believe that in most cases
such hybrid architecture introduces unnecessary complexity.

5. CONCLUSIONS AND FUTURE WORK
The event history architecture provides a powerful ab-

straction, allowing teams of data scientists to collaborate
actively on machine learning projects. Our production im-
plementation delivers personalized recommendations drawn
from millions of candidates, answers queries in under a sec-
ond and incorporates new information in seconds. We are
presently working on Antelope, an open source implementa-
tion incorporating the event history paradigm and providing
a flexible environment for feature engineering. We have used
several machine learning tools alongside the technology de-
veloped here, and can envision deeper integrations, includ-
ing ones with popular data management systems, which only
need to implement the interface of Listing 1.

We remain struck by the gulf between sophisticated dem-
onstrations of what is possible in machine learning, and the
day-to-day realities of what is practical in most organiza-
tions. By bringing Agile capabilities to production data sci-
ence applications we hope to narrow the gap, to help teams
feel the thrill of frequently realized gains, and to help them
build and deploy more of what they can imagine.

2067

6. ACKNOWLEDGMENTS
This work reflects the industriousness and ability of the

data scientists and engineers of the if(we) Relevance Team.
Special thanks go to Karl Dawson and Helena Buhr for lead-
ership and helpful discussions, and to Vinit Garg, Dai Li,
Martin Linenweber, and Madhusudana Shashanka for tire-
less efforts.

7. REFERENCES
[1] Data mining hackathon on (20 mb) Best Buy mobile

web site - ACM SF Bay Area Chapter.
http://bit.ly/1O3eDOD. Accessed: 2015-02-20.

[2] Stream processing explained.
http://www.sqlstream.com/stream-processing/.
Accessed: 2015-02-20.

[3] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak,
J. Haberman, R. Lax, S. McVeety, D. Mills,
P. Nordstrom, and S. Whittle. Millwheel:
Fault-tolerant stream processing at internet scale.
Proc. VLDB Endow., 6(11):1033–1044, Aug. 2013.

[4] M. Anderson, D. Antenucci, V. Bittorf, M. Burgess,
M. J. Cafarella, A. Kumar, F. Niu, Y. Park, C. Ré,
and C. Zhang. Brainwash: A data system for feature
engineering. In CIDR, 2013.

[5] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn,
W. Cunningham, M. Fowler, et al. The Agile
manifesto. http://agilemanifesto.org/, 2001.

[6] D. Betts, J. Dominguez, G. Melnik, F. Simonazzi, and
M. Subramanian. Exploring CQRS and Event
Sourcing: A Journey into High Scalability,
Availability, and Maintainability with Windows Azure.
Microsoft patterns & practices, 2013.

[7] F. P. Brooks Jr. The Mythical Man-Month: Essays on
Software Engineering, Anniversary Edition, 2/E.
Addison-Wesley Professional, 1995.

[8] S. Chandrasekaran and M. J. Franklin. Streaming
queries over streaming data. In VLDB, pages 203–214,
2002.

[9] K. Chandy and W. Schulte. Event Processing:
Designing IT Systems for Agile Companies.
McGraw-Hill, Inc., New York, NY, USA, 2010.

[10] D. Crankshaw, P. Bailis, J. E. Gonzalez, H. Li,
Z. Zhang, M. J. Franklin, A. Ghodsi, and M. I.
Jordan. The missing piece in complex analytics: Low
latency, scalable model management and serving with
Velox. CoRR, abs/1409.3809, 2014.

[11] D. G. Feitelson, E. Frachtenberg, and K. L. Beck.
Development and deployment at Facebook. IEEE
Internet Computing, 17(4):8–17, July 2013.

[12] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and
R. Zadeh. WTF: The who to follow service at Twitter.
In WWW, pages 505–514, 2013.

[13] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The WEKA data
mining software: An update. SIGKDD Explor. Newsl.,
11(1):10–18, Nov. 2009.

[14] L. Hong, R. Bekkerman, J. Adler, and B. D. Davison.
Learning to rank social update streams. In SIGIR,
pages 651–660, 2012.

[15] R. Jurney. Agile Data Science: Building Data
Analytics Applications with Hadoop. O’Reilly Media,
2013.

[16] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer.
Enterprise data analysis and visualization: An
interview study. Visualization and Computer Graphics,
IEEE Transactions on, 18(12):2917–2926, 2012.

[17] K. Kapoor, M. Sun, J. Srivastava, and T. Ye. A
hazard based approach to user return time prediction.
In KDD, pages 1719–1728, 2014.

[18] R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, and
N. Pohlmann. Online controlled experiments at large
scale. In KDD, pages 1168–1176, 2013.

[19] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, (8):30–37, 2009.

[20] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith,
M. J. Franklin, and M. I. Jordan. MLbase: A
distributed machine-learning system. In CIDR, 2013.

[21] J. Kreps. The log: What every software engineer
should know about real-time data’s unifying
abstraction. http://linkd.in/1fDnlQk, Dec. 16 2013.

[22] A. Kumar, F. Niu, and C. Ré. Hazy: Making it easier
to build and maintain big-data analytics. Commun.
ACM, 56(3):40–49, Mar. 2013.

[23] L. Li, W. Chu, J. Langford, and R. E. Schapire. A
contextual-bandit approach to personalized news
article recommendation. In WWW, pages 661–670,
2010.

[24] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: Item-to-item collaborative filtering.
Internet Computing, IEEE, 7(1):76–80, 2003.

[25] T.-Y. Liu. Learning to rank for information retrieval.
Found. Trends Inf. Retr., 3(3):225–331, Mar. 2009.

[26] N. Marz and J. Warren. Big Data: Principles and best
practices of scalable realtime data systems. Manning
Publications Co., 2015.

[27] H. B. McMahan, G. Holt, D. Sculley, M. Young,
D. Ebner, J. Grady, et al. Ad click prediction: A view
from the trenches. In KDD, pages 1222–1230, 2013.

[28] B. Meyer. Agile!: The Good, the Hype and the Ugly.
Springer Science & Business Media, 2014.

[29] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank citation ranking: Bringing order to the
web. 1999.

[30] J. Schleier-Smith. System and method of selecting a
relevant user for introduction to a user in an online
environment, June 17 2014. US Patent 8,756,163.

[31] D. Sculley, G. Holt, D. Golovin, E. Davydov,
T. Phillips, D. Ebner, V. Chaudhary, and M. Young.
Machine learning: The high interest credit card of
technical debt. In SE4ML: Software Engineering for
Machine Learning (NIPS 2014 Workshop), 2014.

[32] C. Zhang, C. Ré, A. A. Sadeghian, Z. Shan, J. Shin,
F. Wang, and S. Wu. Feature engineering for
knowledge base construction. CoRR, abs/1407.6439,
2014.

2068

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150611141603
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20150611141603
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 23.8320
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 9
 10

 1

 HistoryList_V1
 qi2base

