
Architecting for Data Science

johann@ifwe.co@jssmith github.com/ifwe

Johann Schleier-Smith
CTO, if(we)

O’Reilly Software Architecture Conference  
Boston, March 19, 2015

Data Science

value from data

Alternative Definitions

extraction of knowledge from data

making discoveries in the world of big data

statistics + machine learning + scalable
computation + visualization + computer science +

business acumen + skilled communication

Related and Alternative Language

business intelligence

statistics

data mining

forecasting

business reporting

predictive modeling

analyticsknowledge extraction

value

Types of Value

understanding

revenue

product improvements

projections

new inspirations

predictions

customer satisfaction

Today’s Examples

• >10 million candidates to draw from
• >1000 updates/sec

• Must be responsive to current activity
• Users expect instant query results

Recommendation engine 
for dating product

• Real-time is challenging
• Human behavior is
complicated, especially in
social context

• Previous interactions are
perhaps our best hope for
predicting future interactions

• Human connections
• User engagement ecosystem
• Subscription and other revenues

Value
♥

Kaggle competition 
with Best Buy data

https://www.kaggle.com/c/acm-sf-chapter-hackathon-small

https://www.kaggle.com/c/acm-sf-chapter-hackathon-small

Kaggle competition 
with Best Buy data

“outgoing and social (heavy messaging ---
especially distant recipients and opposite gender,
many outgoing comments, many friend requests to
distant people), doesn’t play Pets much”

“receives many messages, active user,
views many profiles, doesn't use meet me,
sends many messages to distant people”

Heavy user overall, (pets, meet me, messaging)!

“heavy user overall, (pets, meet me, messaging)”

value

data

• Vote history

• Social interaction history

• Profile information

Dating product data

{
 “timestamp” : “2011-10-31 09:48:46”,
 “query” : “Assassin’s Creed”,
 “skuSelected” : “2670133”
}

product views

{
 “sku” : “1032361”,
 “regularPrice” : “19.99”,
 “name” : “Need for Speed: Hot Pursuit”,
 “description” : “Fasten your seatbelt and  
 get ready to drive like your life depends 
 on it...”
 ...
}

product updates

Formats for Data

log files

web services

relational databases

unstructured documents

spreadsheets

xml files

Types of Data

technical data

government data

usage records

sensor data

academic data

reference data

yet uncollected data

Vasant Dhar. 2013. Data science and prediction. Commun. ACM 56, 12 (December 2013), 64-73.  
And International Telecommunication Union (ITU) and United Nations Population Division via www.internetlivestats.com/internet-users/

http://doi.acm.org/10.1145/2500499
http://www.internetlivestats.com/internet-users/

Trends

data quantity

machine learning maturing

data variety

data velocity

Machine Learning

classification

decision trees

supervised methods

unsupervised methodsclustering

what matters most is mapping of data

Machine Learning Techniques
• Classification - (Logistic Regression, Decision

Trees, Random Forests)

• Prediction - (Generalized Linear Models, Support
Vector Regression, …)

• Clustering - (K-Means, Hierarchical, Latent
Dirichlet Allocation, …)

• Collaborative filtering, …

Features often matter more than choice of algorithm

data

tools of
the
trade

• Created in 1993

• Implementation of S language but also
inherits from Scheme

• Object oriented code is possible but
not encouraged

• Vast high-quality package ecosystem

• Data is vectors and data frames

Demo

• Statistics

• Visualization

• Machine learning

• REPL, scripts, interactive IDE

• In-memory data sets

http://scikit-learn.org/stable/auto_examples/linear_model/plot_iris_logistic.html

http://scikit-learn.org/stable/auto_examples/linear_model/plot_iris_logistic.html

• More of a general purpose language than R

• Arrays and matrices as basic data structures

• Supports data frames through Pandas

• Sophisticated machine learning libraries

• Generally limited to in-memory data sets

• Leverages commodity hardware to
store large data sets at low cost

• Vibrant and diverse ecosystem

• Popular but not always best solution

• Probably best viewed as marketing
terminology, as opposed to technology

https://hadoopecosystemtable.github.io/

Category Number of
projects

Distributed Filesystem 7
Distributed Programming 18
NoSQL Database 4
Document Data Model 3
Stream Data Model 1
Key-Value Data Model 4
Graph Data Model 3
NewSQL 9
SQL-On-Hadoop 11
Data Ingestion 11
Service Programming 7
Scheduling 3
Machine Learning 6
Benchmarking 5
Security 3
System Deployment 12
Applications 5
Development Frameworks 2
Categorize Pending 16

130 freely licensed open source
projects listed in the Hadoop

Ecosystem Table

https://hadoopecosystemtable.github.io/

Hadoop for Data Scientists

• Pulling data from repository (SQL, Hive)

• MapReduce programming (Java, Scala,
Pig, Python)

• Spark in-memory framework is gaining
adoption rapidly

tools rarely used in data science

version control
automated testing

automated deploymentshared code

agile methodology code review

software architecture

the cycle 
of data science

Data ProcessingData Collection

Models, Algorithms

Data-driven Product
Features

Data Analysis &
Understanding

Reports &
Visualizations

Product Improvements

data science  
at

• Profitable startup actively pursuing big
opportunities in social apps

• Millions of users on existing products

• Thousands of social contacts per second

what it should look like

1. Gain understanding of the product usage

2. See opportunity to make the product better

3. Create training data

4. Train predictive models

5. Put models in production

6. See improvements

what it often looks like

1. Gain understanding of the product usage

2. See opportunity to make the product better

3. Pull records from relational database to create
interesting features (usually aggregates)

4. Train predictive models

5. Go implement models for production

6. See improvements

1. Gain understanding of the product usage

2. See opportunity to make the product better

3. Pull records from relational database to create
interesting features (usually aggregates)

4. Train predictive models

5. Go implement models for production

6. See improvements

3-6  
months

1. Gain understanding of the product usage

2. See opportunity to make the product better

3. Pull records from relational database to create
interesting features (usually aggregates)

4. Train predictive models

5. Go implement models for production

6. See improvements Cool! 
Was it worth it?

implementation  
 pain points

• Data scientist hands model description to
software engineer

• May need to translate features from SQL to Java

• Aggregate features require batch processing

• May need to adjust features and model to achieve
real-time updates

• Fast scoring requires high-performance in-
memory data structures

new thinking

new architecture

one right way to data

event history

one right way to data

everything is an event

Bob registers
Alice registers

Alice updates profile
Bob opens app

Bob sees Alice in recommendations
Bob swipes yes on Alice

Alice receives push notification
Alice sees Bob swiped yes

Alice swipes yes
Alice sends message to Bob

architecture
comparison

Database'

Applica-on'
Web'API'

Ranking' Solr'Search'

Indexing'
Service'

Change'logs'

Occasional'
index'rebuilds'

Change'logs'

Produc'on)
Development)

Exploratory'
Analysis'

Training'&'
Backtes-ng'

Database'

Applica-on'
Web'API'

Ranking' Solr'Search'

Indexing'
Service'

Change'logs'

Occasional'
index'rebuilds'

Change'logs'

Produc'on)
Development)

Exploratory'
Analysis'

Training'&'
Backtes-ng'

Database'

Applica-on'
Web'API'

Ranking' Solr'Search'

Indexing'
Service'

Change'logs'

Occasional'
index'rebuilds'

Change'logs'

Produc'on)
Development)

Exploratory'
Analysis'

Training'&'
Backtes-ng'

Database'

Applica-on'
Web'API'

Ranking' Solr'Search'

Indexing'
Service'

Change'logs'

Occasional'
index'rebuilds'

Change'logs'

Produc'on)
Development)

Exploratory'
Analysis'

Training'&'
Backtes-ng'

Database'

Applica-on'
Web'API'

Ranking' Solr'Search'

Indexing'
Service'

Change'logs'

Occasional'
index'rebuilds'

Change'logs'

Produc'on)
Development)

Exploratory'
Analysis'

Training'&'
Backtes-ng'

Database'

Applica-on'
Web'API'

Ranking'

Event'History'Repository'

Solr'Search'

Real=-me'
State'Updates'

Change'logs'Real=-me'events'

Occasional'
index'rebuilds'

Exploratory'
Analysis'&'
Visualiza-on'

Produc'on)
Development)

Training'&'
Backtes-ng'

State'Updates'

Monitoring'

Database'

Applica-on'
Web'API'

Ranking'

Event'History'Repository'

Solr'Search'

Real=-me'
State'Updates'

Change'logs'Real=-me'events'

Occasional'
index'rebuilds'

Exploratory'
Analysis'&'
Visualiza-on'

Produc'on)
Development)

Training'&'
Backtes-ng'

State'Updates'

Monitoring'

Database'

Applica-on'
Web'API'

Ranking'

Event'History'Repository'

Solr'Search'

Real=-me'
State'Updates'

Change'logs'Real=-me'events'

Occasional'
index'rebuilds'

Exploratory'
Analysis'&'
Visualiza-on'

Produc'on)
Development)

Training'&'
Backtes-ng'

State'Updates'

Monitoring'

Database'

Applica-on'
Web'API'

Ranking'

Event'History'Repository'

Solr'Search'

Real=-me'
State'Updates'

Change'logs'Real=-me'events'

Occasional'
index'rebuilds'

Exploratory'
Analysis'&'
Visualiza-on'

Produc'on)
Development)

Training'&'
Backtes-ng'

State'Updates'

Monitoring'

Database'

Applica-on'
Web'API'

Ranking'

Event'History'Repository'

Solr'Search'

Real=-me'
State'Updates'

Change'logs'Real=-me'events'

Occasional'
index'rebuilds'

Exploratory'
Analysis'&'
Visualiza-on'

Produc'on)
Development)

Training'&'
Backtes-ng'

State'Updates'

Monitoring'

Event History API
trait EventHistory {
 def publishEvent(e: Event)
"

 def getEvents(
 startTime: Date,
 endTime: Date,
 eventFilter: EventFilter,
 eventHandler: EventHandler
)
}

Event History API
trait EventHistory {
 def publishEvent(e: Event)
"

 def getEvents(
 startTime: Date,
 endTime: Date,
 eventFilter: EventFilter,
 eventHandler: EventHandler
)
}

Event History API
trait EventHistory {
 def publishEvent(e: Event)
"

 def getEvents(
 startTime: Date,
 endTime: Date,
 eventFilter: EventFilter,
 eventHandler: EventHandler
)
}

+∞ for  
real-time  
streaming

training data
comparison

Database'

Applica-on'
Web'API'

Ranking' Solr'Search'

Indexing'
Service'

Change'logs'

Occasional'
index'rebuilds'

Change'logs'

Produc'on)
Development)

Exploratory'
Analysis'

Training'&'
Backtes-ng'

Events'State'Snapshots''

Training'
Features'

Training'
Outcomes'

Time'

Database'

Applica-on'
Web'API'

Ranking'

Event'History'Repository'

Solr'Search'

Real=-me'
State'Updates'

Change'logs'Real=-me'events'

Occasional'
index'rebuilds'

Exploratory'
Analysis'&'
Visualiza-on'

Produc'on)
Development)

Training'&'
Backtes-ng'

State'Updates'

Monitoring'

Updates(

Training(
features(

Training(
outcome(

Time(

Online(State(
Ev
en

ts
(

Training(Data(

1. Gain understanding of the product usage

2. See opportunity to make the product better

3. Create training data

4. Train predictive models

5. Put models in production

6. See improvements
Fa

st c
ycles!!

Live Demo
https://www.kaggle.com/c/acm-sf-chapter-hackathon-small

https://github.com/ifwe/antelope

• Open source implementation derived from if(we)’s
proprietary platform

• Not ready scale or production, but useful for
demonstration purposes

• Seeking collaborators

product update events
{
 “timestamp” : “2012-05-03 6:43:15”,
 “eventType” : “ProductUpdate”,
 “eventProperties” : {
 “sku” : “1032361”,
 “regularPrice” : “19.99”,
 “name” : “Need for Speed: Hot Pursuit”,
 “description” : “Fasten your seatbelt and  
 get ready to drive like your life depends 
 on it...”
 ...
 }
}

product view events

{
 “timestamp” : “2011-10-31 09:48:46”,
 “eventType” : “ProductView”,
 “eventProperties” : {
 “query” : “Modern warfare”,
 “skuSelected” : “2670133”
 }
}

demo

Try it yourself, code and instructions at:  
https://github.com/ifweco/antelope/blob/master/doc/demo.md

https://github.com/ifweco/antelope/blob/master/doc/demo.md

new
tools :)

Architecture for 
Data Science

data warehousing

Database'

Applica-on'
Web'API'

Ranking' Solr'Search'

Indexing'
Service'

Change'logs'

Occasional'
index'rebuilds'

Change'logs'

Produc'on)
Development)

Exploratory'
Analysis'

Training'&'
Backtes-ng'

Data$
Warehouse$

Extract$ Lo
ad
$

Transform$

Opera7onal$
Data$Store$ Staging$

log transform use

extract transform load

Data Architecture

dimensional modeling

relational modeling

Warehouse Design
normalization

slowly changing 
dimensions

denormalization

star schema

slowly changing dimensions

type 1: overwrite the old data

type 2: multiple rows with versioning

type 3: extra columns for older versions

slowly changing dimensions

event history

Database'

Applica-on'
Web'API'

Ranking'

Event'History'Repository'

Solr'Search'

Real=-me'
State'Updates'

Change'logs'Real=-me'events'

Occasional'
index'rebuilds'

Exploratory'
Analysis'&'
Visualiza-on'

Produc'on)
Development)

Training'&'
Backtes-ng'

State'Updates'

Monitoring'

Event&
Indexing&

Applica1on&
Web&API&

Ranking&

Event&History&Repository&

Solr&Search&

Real>1me&
State&Updates&

Change&logs&Real>1me&events&

Exploratory&
Analysis&&&
Visualiza1on&

Produc'on)
Development)

Training&&&
Backtes1ng&

State&Updates&

Monitoring&

trait EventHistory {
 def publishEvent(e: Event)
"

 def getEvents(
 startTime: Date,
 endTime: Date,
 eventFilter: EventFilter,
 eventHandler: EventHandler
)
}

event history design

Data Architecture

ok to denormalize

log a lot

think about the types

• Make sure that events are simple facts

• Files are ok for event history, don’t really need a database

• Use an object hierarchy to model events in code

• Use online features that are efficient to update incrementally

• Write efficient implementations before than scaling out

• Functional style makes it easier

• Encourage reactive processing

Data Quality

• Matters more than transformations, more than algorithms

• Data that doesn’t make sense often indicates an application bug

• Do assertions, e.g., make sure things aren’t happening out of order

• All data in form of events – no exceptions!
• Same feature code in production and development
• Emphasis on creative feature engineering
• Quick cycles between ideas and production

github.com/ifwe/antelope
@jssmith

Try the Antelope Demo: 
https://github.com/ifwe/antelope/blob/master/doc/demo.md

