
Architecting for Data Science

johann@ifwe.co@jssmith github.com/ifwe

Johann Schleier-Smith 
CTO, if(we)

O’Reilly Software Architecture Conference  
Boston, March 19, 2015



Data Science





value from data



Alternative Definitions

extraction of knowledge from data

making discoveries in the world of big data

statistics + machine learning + scalable 
computation + visualization + computer science + 

business acumen + skilled communication



Related and Alternative Language

business intelligence

statistics

data mining

forecasting

business reporting

predictive modeling

analyticsknowledge extraction



value



Types of Value

understanding

revenue

product improvements

projections

new inspirations

predictions

customer satisfaction 



Today’s Examples



• >10 million candidates to draw from 
• >1000 updates/sec 

• Must be responsive to current activity 
• Users expect instant query results

Recommendation engine 
for dating product



• Real-time is challenging 
• Human behavior is 
complicated, especially in 
social context 

• Previous interactions are 
perhaps our best hope for 
predicting future interactions



• Human connections 
• User engagement ecosystem 
• Subscription and other revenues

Value
♥



Kaggle competition 
with Best Buy data

https://www.kaggle.com/c/acm-sf-chapter-hackathon-small

https://www.kaggle.com/c/acm-sf-chapter-hackathon-small


Kaggle competition 
with Best Buy data









“outgoing and social (heavy messaging ---
especially distant recipients and opposite gender, 
many outgoing comments, many friend requests to 
distant people), doesn’t play Pets much”

“receives many messages, active user, 
views many profiles, doesn't use meet me, 
sends many messages to distant people” 

Heavy user overall, (pets, meet me, messaging)!

“heavy user overall, (pets, meet me, messaging)” 



value



data



• Vote history 

• Social interaction history 

• Profile information

Dating product data



{ 
  “timestamp” : “2011-10-31 09:48:46”, 
  “query” : “Assassin’s Creed”, 
  “skuSelected” : “2670133” 
}

product views



{ 
  “sku” : “1032361”, 
  “regularPrice” : “19.99”, 
  “name” : “Need for Speed: Hot Pursuit”, 
  “description” : “Fasten your seatbelt and  
   get ready to drive like your life depends 
   on it...” 
   ... 
}

product updates



Formats for Data

log files

web services

relational databases

unstructured documents

spreadsheets

xml files



Types of Data

technical data

government data

usage records

sensor data

academic data

reference data

yet uncollected data



Vasant Dhar. 2013. Data science and prediction. Commun. ACM 56, 12 (December 2013), 64-73.  
And International Telecommunication Union (ITU) and United Nations Population Division via www.internetlivestats.com/internet-users/

http://doi.acm.org/10.1145/2500499
http://www.internetlivestats.com/internet-users/


Trends

data quantity

machine learning maturing

data variety

data velocity



Machine Learning

classification

decision trees

supervised methods

unsupervised methodsclustering

what matters most is mapping of data



Machine Learning Techniques
• Classification - (Logistic Regression, Decision 

Trees, Random Forests) 

• Prediction - (Generalized Linear Models, Support 
Vector Regression, …) 

• Clustering - (K-Means, Hierarchical, Latent 
Dirichlet Allocation, …) 

• Collaborative filtering, …

Features often matter more than choice of algorithm



data



tools of 
the 
trade



• Created in 1993 

• Implementation of S language but also 
inherits from Scheme 

• Object oriented code is possible but 
not encouraged 

• Vast high-quality package ecosystem 

• Data is vectors and data frames



Demo





• Statistics 

• Visualization 

• Machine learning 

• REPL, scripts, interactive IDE 

• In-memory data sets





http://scikit-learn.org/stable/auto_examples/linear_model/plot_iris_logistic.html

http://scikit-learn.org/stable/auto_examples/linear_model/plot_iris_logistic.html


• More of a general purpose language than R 

• Arrays and matrices as basic data structures 

• Supports data frames through Pandas 

• Sophisticated machine learning libraries 

• Generally limited to in-memory data sets



• Leverages commodity hardware to 
store large data sets at low cost 

• Vibrant and diverse ecosystem 

• Popular but not always best solution 

• Probably best viewed as marketing 
terminology, as opposed to technology



https://hadoopecosystemtable.github.io/

Category Number of 
projects

Distributed Filesystem 7
Distributed Programming 18
NoSQL Database 4
Document Data Model 3
Stream Data Model 1
Key-Value Data Model 4
Graph Data Model 3
NewSQL 9
SQL-On-Hadoop 11
Data Ingestion 11
Service Programming 7
Scheduling 3
Machine Learning 6
Benchmarking 5
Security 3
System Deployment 12
Applications 5
Development Frameworks 2
Categorize Pending 16

130 freely licensed open source 
projects listed in the Hadoop 

Ecosystem Table

https://hadoopecosystemtable.github.io/


Hadoop for Data Scientists

• Pulling data from repository (SQL, Hive) 

• MapReduce programming (Java, Scala, 
Pig, Python) 

• Spark in-memory framework is gaining 
adoption rapidly



tools rarely used in data science



version control
automated testing

automated deploymentshared code

agile methodology code review

software architecture



the cycle 
of data science



Data ProcessingData Collection

Models, Algorithms

Data-driven Product 
Features

Data Analysis & 
Understanding

Reports & 
Visualizations

Product Improvements



data science  
at



• Profitable startup actively pursuing big 
opportunities in social apps 

• Millions of users on existing products 

• Thousands of social contacts per second



what it should look like



1. Gain understanding of the product usage 

2. See opportunity to make the product better 

3. Create training data 

4. Train predictive models 

5. Put models in production 

6. See improvements



what it often looks like



1. Gain understanding of the product usage 

2. See opportunity to make the product better 

3. Pull records from relational database to create 
interesting features (usually aggregates) 

4. Train predictive models 

5. Go implement models for production 

6. See improvements



1. Gain understanding of the product usage 

2. See opportunity to make the product better 

3. Pull records from relational database to create 
interesting features (usually aggregates) 

4. Train predictive models 

5. Go implement models for production 

6. See improvements

3-6  
months 



1. Gain understanding of the product usage 

2. See opportunity to make the product better 

3. Pull records from relational database to create 
interesting features (usually aggregates) 

4. Train predictive models 

5. Go implement models for production 

6. See improvements Cool! 
Was it worth it?



implementation  
 pain points



• Data scientist hands model description to 
software engineer 

• May need to translate features from SQL to Java 

• Aggregate features require batch processing 

• May need to adjust features and model to achieve 
real-time updates 

• Fast scoring requires high-performance in-
memory data structures



new thinking



new architecture



one right way to data



event history

one right way to data



everything is an event



Bob registers 
Alice registers 

Alice updates profile 
Bob opens app 

Bob sees Alice in recommendations 
Bob swipes yes on Alice 

Alice receives push notification 
Alice sees Bob swiped yes 

Alice swipes yes 
Alice sends message to Bob



architecture 
comparison
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Event History API
trait EventHistory { 
  def publishEvent(e: Event) 
"

  def getEvents( 
    startTime: Date, 
    endTime: Date, 
    eventFilter: EventFilter, 
    eventHandler: EventHandler 
  ) 
}



Event History API
trait EventHistory { 
  def publishEvent(e: Event) 
"

  def getEvents( 
    startTime: Date, 
    endTime: Date, 
    eventFilter: EventFilter, 
    eventHandler: EventHandler 
  ) 
}



Event History API
trait EventHistory { 
  def publishEvent(e: Event) 
"

  def getEvents( 
    startTime: Date, 
    endTime: Date, 
    eventFilter: EventFilter, 
    eventHandler: EventHandler 
  ) 
}

+∞ for  
real-time  
streaming



training data 
comparison
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1. Gain understanding of the product usage 

2. See opportunity to make the product better 

3. Create training data 

4. Train predictive models 

5. Put models in production 

6. See improvements
Fa

st c
ycles!!



Live Demo
https://www.kaggle.com/c/acm-sf-chapter-hackathon-small

https://github.com/ifwe/antelope



• Open source implementation derived from if(we)’s 
proprietary platform 

• Not ready scale or production, but useful for 
demonstration purposes 

• Seeking collaborators



product update events
{ 
  “timestamp” : “2012-05-03 6:43:15”, 
  “eventType” : “ProductUpdate”, 
  “eventProperties” : { 
    “sku” : “1032361”, 
    “regularPrice” : “19.99”, 
    “name” : “Need for Speed: Hot Pursuit”, 
    “description” : “Fasten your seatbelt and  
     get ready to drive like your life depends 
     on it...” 
    ... 
  } 
}



product view events

{ 
  “timestamp” : “2011-10-31 09:48:46”, 
  “eventType” : “ProductView”, 
  “eventProperties” : { 
    “query” : “Modern warfare”, 
    “skuSelected” : “2670133” 
  } 
}



demo

Try it yourself, code and instructions at:  
https://github.com/ifweco/antelope/blob/master/doc/demo.md

https://github.com/ifweco/antelope/blob/master/doc/demo.md








new 
tools :)



Architecture for 
Data Science



data warehousing
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Data$
Warehouse$

Extract$ Lo
ad
$

Transform$

Opera7onal$
Data$Store$ Staging$





log transform use 

extract transform load 



Data Architecture

dimensional modeling

relational modeling



Warehouse Design
normalization

slowly changing 
dimensions

denormalization

star schema



slowly changing dimensions



type 1: overwrite the old data

type 2: multiple rows with versioning

type 3: extra columns for older versions



slowly changing dimensions

event history
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trait EventHistory { 
  def publishEvent(e: Event) 
"

  def getEvents( 
    startTime: Date, 
    endTime: Date, 
    eventFilter: EventFilter, 
    eventHandler: EventHandler 
  ) 
}



event history design



Data Architecture

ok to denormalize

log a lot

think about the types



• Make sure that events are simple facts 

• Files are ok for event history, don’t really need a database 

• Use an object hierarchy to model events in code 

• Use online features that are efficient to update incrementally 

• Write efficient implementations before than scaling out 

• Functional style makes it easier 

• Encourage reactive processing







Data Quality

• Matters more than transformations, more than algorithms 

• Data that doesn’t make sense often indicates an application bug 

• Do assertions, e.g., make sure things aren’t happening out of order





• All data in form of events – no exceptions! 
• Same feature code in production and development 
• Emphasis on creative feature engineering 
• Quick cycles between ideas and production

github.com/ifwe/antelope 
@jssmith

Try the Antelope Demo: 
https://github.com/ifwe/antelope/blob/master/doc/demo.md


